

Estabilização De Uma Escavação Urbana Com Taludes De Até 12m Com Solo Grampeado

Marciano Lang Fraga Engenheiro Civil, MLF Geotecnia, Porto Alegre, Brasil, <u>marciano@mlfgeotecnia.com.br</u>

Gonçalo de Lima Sonaglio Engenheiro Civil, MLF Geotecnia, Porto Alegre, Brasil, <u>goncalo@mlfgeotecnia.com.br</u>

RESUMO: Para a implantação de um edifício na cidade de Bento Gonçalves/RS - Brasil com 4 níveis de subsolo foram necessárias escavações a prumo de até 12m de altura, não usual para a região. Como investigação geotécnica foram realizadas 6 sondagens mistas (percussão + rotativa). O terreno sondado é constituído basicamente, por rocha basáltica em sub-superfície, tendo como camadas sobrejacentes alterações intemperizadas desta rocha. Normalmente, a alteração ocorre na forma de desintegração da rocha, ocorrendo em grande parte do estado do Rio Grande do Sul. Como solução foi utilizado Solo Grampeado. O projeto inicial previa grampos a cada 1,25 m e durante a execução foi possível alterar o projeto conforme o avançar das escavações. A solução contou com grampos de φ 20mm e comprimento variando de 4 a 11m, juntamente com uma face de concreto projetado de espessura de 10 cm e tela soldada de aço. Os espaçamentos dos grampos variaram de 1,1 m até 1,5m (horizontal e vertical), com até 9 grampos nas linhas de escavação. Como monitoramento do desempenho da solução foram utilizados alvos reflexivos topográficos para aferição dos deslocamentos. Através dos dados obtidos foi possível validar a solução utilizada, e realizar a verificação dos possíveis parâmetros geotécnicos para a condição local, através de retroanálise da estrutura. A importância deste trabalho é a possibilidade de parametrização de um material de difícil caracterização, o basalto decomposto.

PALAVRAS-CHAVE: Solo Grampeado, Contenções, Escavações Urbanas

ABSTRACT: For the construction of a building with 4 basement levels in the city of Bento Gonçalves / RS-Brazil, vertical excavations of up to 12m in height, not usual for the region, were required. As geotechnical investigation, 6 mixed drillings (percussion + core boring) were performed. The local soil consists basically of subsurface basaltic rock, with overlying weathered layers of this rock. Normally, the decomposition occurs in the form of rock disintegration, occurring in most of the state of Rio Grande do Sul. As a solution was used Soil Nailing. The initial design included nails every 1.25 m, during the execution was possible to change the design as the excavations progressed. The solution featured nail of ϕ 20mm and length ranging from 4 to 11m, along with a 10 cm thick shotcrete face and welded steel mesh. Nail spacing ranged from 1.1 m to 1.5 m (horizontal and vertical), with up to 9 levels of nails. For performance monitoring, topographic reflective targets were used to measure displacements. Through the obtained data it was possible to validate the solution, and to verify the possible geotechnical parameters for the local condition, through retroanalysis. The importance of this work is the possibility of parameterization of a material with complex characterization, the decomposed basalt.

KEYWORDS: Soil Nailing, Retaining Structures, Urban Excavations

1 Introdução

Para a realização dos procedimentos de escavação necessários, tendo em vista a competência do solo local, foi idealizada uma solução em solo grampeado para a estabilização do corte a prumo de 12 m de altura. Esta solução pode ser utilizada para estabilização de taludes, tanto naturais quanto artificiais, sendo uma técnica que atende critérios tanto técnicos quanto econômicos.

Foi possível a calibração dos parâmetros geotécnicos com base na medida de deslocamentos e com a análise visual das camadas escavadas.

2 Objetivo

O trabalho tem como objetivo a parametrização geotécnica do basalto decomposto, material encontrado em grande parte do estado do Rio Grande do Sul e de difícil caracterização. A verificação se deu através de um modelo consagrado (Hoek e Brown, 1997), cuja utilização pode ser satisfatória e auxiliar futuros trabalhos no mesmo tipo de material.

3 Caracterização Geotécnica

Como investigação geotécnica no local de realizada da obra foram realizadas 6 sondagens mistas (percussão + rotativa), sendo um perfil geotécnico tipo do local da obra apresentado na Figura 1.

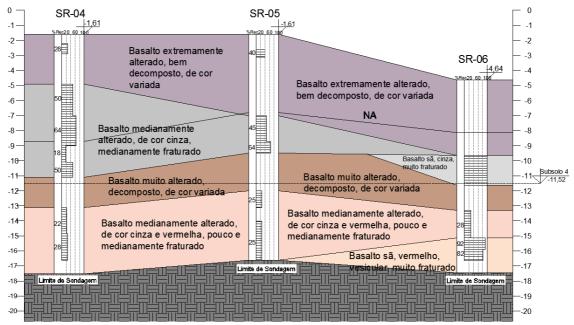


Figura 1. Perfil Geotécnico.

3.1 Basalto Alterado

Conforme apresentado na Figura 1, o solo predominante no local é o basalto alterado, elemento que ocorre, geralmente, associados à topografia variando, na região, de ondulada a acidentada. A porção superficial da ocorrência normalmente está em contato íntimo com uma incipiente camada de solo de alteração.

É característica a ocorrência de uma matriz argilosa preenchendo juntas e envolvendo os fragmentos. Entretanto, podem ser encontradas significativas porções onde as juntas se mantêm praticamente isentas de material argiloso (RETORRE, 2005).

O termo alteração designa as modificações físicas, químicas, geomecânicas e dimensionais sofridas pelas rochas. Essas transformações dependem de fatores intrínsecos e extrínsecos.

Os basaltos sãos possuem argilominerais de origem hidrotermal, ao passo que os alterados os possuem de origem hidrotermal e meteórica.

O comportamento de rocha dos basaltos alterados é resultante da resistência do seu esqueleto pétreo. A importância reside, exatamente, no estado de alteração em que se encontram os minerais constituintes e na natureza e o teor de minerais secundários, uma vez que são estes que determinam a velocidade de alteração da rocha (PALMA, 2003).

3.2 Parametrização

Com base nos estudos de Faro (2016), Diemer et al. (2008) e Perazzolo (2003), sabe-se que a faixa de variação dos parâmetros de um solo residual de basalto possui grande variação: 0 < c' < 39 kPa e $21^{\circ} < \phi' < 54^{\circ}$. No estudo de Faro (2016), foram realizadas sondagens SPT, e, também, retiradas amostras indeformadas em profundidades onde o NSPT médio tinha valor de 5 golpes. Após a realização de ensaios triaxiais, os parâmetros obtidos foram: c' = 24 kPa e $\phi' = 32^{\circ}$.

Para a parametrização foram utilizadas, também, as proposições de ϕ ', c' e E, conforme o método generalizado de Hoek e Brown (2019), que é expresso como:

$$\sigma_1 = \sigma_3 + \sigma_{ci} \left(m_b \cdot \left(\frac{\sigma_3}{\sigma_{ci}} \right) + s \right)^a \tag{1}$$

Onde mb, s, e a são constantes do material rochoso, dados por:

$$m_b = m_i \exp\left[\frac{GSI - 100}{28 - 14D}\right]$$
 (2)

$$s = \exp\left[\frac{GSI - 100}{9 - 3D}\right] \tag{3}$$

$$a = \frac{1}{2} + \frac{1}{6} * \left(e^{-\frac{GSI}{15}} - e^{-\frac{20}{15}} \right) \tag{4}$$

Para rochas intactas, as constantes dos materiais são denotadas por m_i, s=1 e a=0,5; D é um fator que depende no grau de distúrbio que o maciço rochoso estará exposto.-

Para estimativa do módulo de deformação do material, os autores propõem:

$$E_{rm} = 10^5 \frac{\left(1 - \frac{D}{2}\right)}{1 + \exp\left[\frac{75 + 25D - GSI}{11}\right]} \tag{5}$$

O valor típico de m_i para basalto está na faixa de 17 a 27, segundo Hoek e Brown (1997) e Marinos e Carter (2018). O valor de GSI pode ser obtido pela Figura 2. Foi adotado D=0 pois não foi previsto e nem realizado o uso de explosivos para o avanço dos trabalhos.

Utilizando a formulação proposta por Hoek e Brown (1997), Hoek e Brown (2019) e não havendo sido desmobilizados valores de RQD, com auxílio da Figura 3 é adotado:

- Rocha sem recuperação: σci = 1 MPa; m = 17 e GSI = 15.
- Rocha com recuperação baixa (~20%): σci = 3 MPa; m = 17 e GSI = 15.
- Rocha com recuperação média (~50%): σci = 5 MPa; m = 17 e GSI = 20.
- Rocha com recuperação alta (>80%): σci = 10 MPa; m = 17 e GSI = 25

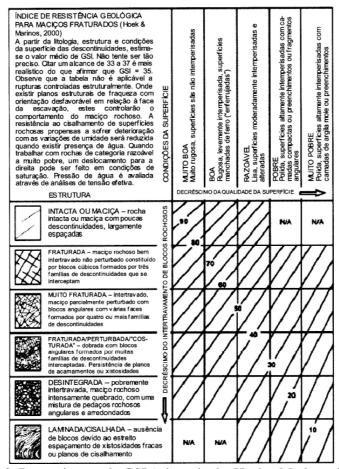


Figura 2. Determinação do GSI (adaptado de: Hoek e Marinos, 2000)

			T		
	ESCALA DE GRAU (ISRM, 1981)	TERMO	Descrição	fator de redução de σ⊲ (apud Stacey e Page, 1986)	Notas GSI
	VI	SOLO RESIDUAL	Solos deriva dos de material alterado (100 %s do) (dos graus IV, V)	N/A (mecânica dos solos)	N/A (mecânica dossolos)
	VI	COMPLETA MENTE ALTERADA	Todo ma ferial rochoso está decomposto elou de sintegrado do solo (menos de 30% de rochas dos graus I, II a III). A e strutura original esta ainda visivel. Cisalhamento pode ser a fetado pela matriz.	0,001-0,004	Locals onde o G\$1 ibm a glicabilida de limitada. A estrutura foi se veramento perturbada e o intertravamento entre os fragmentos foi perdido. Zonas are nosas-argilios as seguem a estrutural original e fragmentos de rocha não estão intertravados. Condição das juntas e Multo Potre.
X	IV	MUITO ALTERADA	Mais da meita de do material rochos o está decompos to e/ ou des integrado do solo (20 %a 50% de rochas dos graus I, II e IIII). Intemperismo severo ao longo das superficies. Rocha sã ou descolorida está presemte tanto como estrutura descontinua ou como pedra calcára. O material rochoso é friável. Pedras calcáres as inde afetam o comportamento cisalhante do maciço rochoso.	0,04	A estrutura foi ampiamente perturbada e o intertravamento entre os fragmentos está altamente frouxo. Produtos arenosos e argilosos preenchem todas descontinuidades. Condições das juntas é Murto Pobre. O GSI vai para direita e para baixo no gráfico.
		MODERADA MENTE ALTERADA	Menos da metade do material rochoso esta decomposto e/ou desintegrado com o solo (50% a 50% de rocha dos graus I, II e III), intemperatimo ato a severo a olongo das superificies. Rocha são ou descolorida esta presente tanto como estrutura descontinua ou como pedra calidaria. O material rochoso não é friávei. A estrutura esta travada.	0,1	O intertravamento entre os fragmentos esta consideradamente afrouxado. Zonas de intemperismo fragmentos estão preenchendo principios de descontinuida des (ex. bandas gantissicas) e outras dunas. Condição das juntas e Potres. O S il muda para o de uma estrutura más pobre (em blocos/perturbado) e para a direita no orafico.
		LEVEMENTE ALTERADA	Descrioração indica o intemperismo do materia i rochoso e todas as superficies de descontinuidades (>69 % de rochas dos graus I, II e III). Todo material rochoso pode estar descriorido pelo intemperismo e pode estar de alguma forma mais fraco que a condição sã.	0,4	A estrutura não e são alterada, mais a qualidade das superfícies de descontinuidades é. O G SI é reduzido para condições Razoávels.
	1	SĀ	Sem sinsi visivel de intemperismo (100% de rocha); possivelmente pequena descoloração em superficies de descontinuidades principals	1	Rochas sãs geralmente maciças (infactas a com muitos biocos). Condições das juntas é Muito Boa a Boa. Superficie se biocos es to forte mente infar travados. A massa de rocha pode estar mais fraturada mas somente em profundidade (ao longo da zona de falha) onde interpretamo não foi favorecido. Em superficie, uma massa de rocha fraturada é raramente sã.

Figura 3. GSI e mudança da resistência devido ao intemperismo (fonte: adaptado de ISRM (1981) e Stacey e Page (1986) apud Marinos e Carter (2018))

4 Solo Grampeado

A técnica da solução utilizada para estabilização do local estudado foi o solo grampeado, que consiste em introduzir elementos de reforço dentro do maciço de solo/rocha, distribuídos com um espaçamento uniforme sobre a face do talude, sendo os reforços denominados grampos ou chumbadores. A função destes elementos é conter cunhas de ruptura profundas que possam vir se originar dentro do maciço de solo/rocha devido à soma de inúmeras condições desfavoráveis (carregamentos, geometria, poro-pressões, resistência dos materiais, descontinuidades, fluxo de água, dentre outras). Neste tipo de solução é comum associar a estes grampos um revestimento para a face do talude, um sistema de faceamento, que tem por objetivo estabilizar e proteger contra processos erosivos a camada superficial do talude.

O elemento de reforço inserido tem a função de absorver os esforços gerados pela movimentação de uma massa de solo instável dentro do talude e redistribuí-los para a porção estável, solidarizando as duas regiões (Geoguide 7, 2017).

Segundo o Geoguide 7 (2017), estes esforços são transmitidos à massa de solo estável por meio da aderência na interface solo/grampo, mobilizada frente aos pequenos deslocamentos dos grampos em relação ao solo. A mobilização da resistência ao longo dos grampos não ocorre de maneira uniforme, devido às características construtivas dos grampos, da magnitude dos esforços atuantes e das características heterogêneas do subsolo

Ortigão et al. (1993) e Solotrat (2018) citam que existem duas principais metodologias de execução dos grampos, sendo uma por meio de cravação e a segunda por meio de perfuração acompanhada de injeção. Neste trabalho foi utilizada a segunda.

A execução dos grampos é realizada através de um pré-furo, realizado no terreno com auxílio de perfuratrizes hidráulicas ou pneumáticas. O grampo, então, é introduzido no pré-furo na posição desejada, com auxílio de dispositivos centralizadores. Junto às barras de aço são instalados tubos de injeção perdidos, tubos de PVC, cuja função é conduzir a nata de cimento para dentro da área do furo. Nestes tubos são previstas válvulas de injeção, permitindo o livre fluxo da calda de cimento.

Como métodos de análise para a solução, a quantidade e o comprimento dos reforços são estabelecidos por análises de estabilidade interna e externa. A análise de estabilidade externa pode ser conduzida utilizando os mesmos critério dos muros convencionais, tais como deslizamento, tombamento, capacidade de carga das fundações e ruptura geral (GEORIO, 2014). Comumente a análise de estabilidade interna é desenvolvida utilizando métodos de equilíbrio limite. O comprimento dos grampos deve também atender às condições necessárias ao equilíbrio externo.

O dimensionamento, portanto, deve constar em uma análise de estabilidade global, de arrancamento dos grampos e da resistência do elemento de reforço. Na Figura 4, é apresentada a vista frontal de um dos lados do terreno, mostrando a distribuição dos grampos ao longo da escavação. Ao longo da contenção foram distribuídos grampos com ϕ 20mm e comprimentos de 11, 8, 5 e 4 m, totalizando mais de 3900 metros lineares de aço. Foram especificados grampos sub verticais na parte superior da contenção. A face da estrutura é em concreto projetado, com espessura especificada de 10 cm e tela soldada nervurada para reforço. Adotou-se qs = 50 kPa. As análises realizadas estão explanadas no capítulo a seguir.

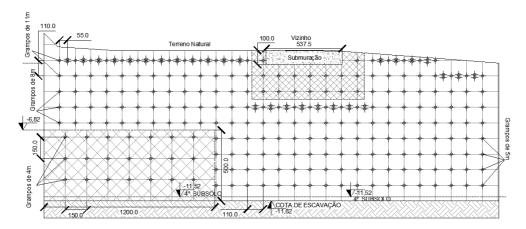


Figura 4. Vista Frontal

5 Modelagem Numérica

O objetivo da modelagem é analisar o problema como um todo. De acordo com o método dos elementos finitos, um meio contínuo é dividido em um número de elementos. Cada elemento consiste em um número de nós. Cada nó tem um número de graus de liberdade que correspondem a valores discretos das incógnitas na condição de contorno do problema a ser resolvido (Brinkgreve et al., 2013)

O comportamento mecânico dos solos pode ser modelado com diversos graus de precisão, o Modelo Linear Elástico tem a Lei de elasticidade linear de Hooke como premissa, considerando as relações tensão-deformação da forma mais simples disponíveis. O modelo envolve somente dois parâmetros de entrada (E e v), embora não seja o modelo adequado para simular o comportamento de solos e rochas fraturadas, pode ser utilizado para modelar volumes rígidos nos solos, como paredes de concreto ou formações rochosas intactas.

O modelo de Mohr-coulomb é um modelo linear-elástico-perfeitamente plástico que envolve cinco parâmetros de entrada (E e ν para parâmetros de elasticidade do solo, ϕ ' e c' para a plasticidade e ψ para o ângulo de dilatância). Este modelo de Mohr-Coulomb representa uma aproximação de "primeira-ordem" do comportamento de solos e rochas.

Para cada camada é estimada uma rigidez média constante ou uma rigidez que aumenta linearmente com a profundidade, o modelo não inclui a dependência das propriedades do solo com a tensão, com o caminho de tensões e nem a dependência da deformação com a rigidez ou a rigidez anisotrópica. Valores iniciais de tensão horizontal deve ser gerada utilizando valores adequados de K0.

Os grampos e a face resistente foram modelados como Elementos de Viga, que possuem 3 nós e são utilizados para descrever objetos com "estrutura semi-unidimensional" com rigidez flexural. Elementos de viga têm seis graus de liberdade por nó. As propriedades necessárias para a modelagem são: E (módulo de elasticidade), A (área da seção) e I (momento de inércia da seção), conforme as equações seguintes:

$$A_{grampo} = \pi . \frac{d^2}{4}; I_{grampo} = \pi . \frac{d^4}{64}$$
 (6)

$$A_{parede} = b.h; I_{parede} = (b.h^3)/12$$
 (7)

Arbitrou-se d = 0,1 m; b = 1m e h= 0,1m. O módulo de elasticidade foi utilizado o do concreto classe C20, conforme NBR 6118(ABNT, 2014), com o valor de 21 GPa.

6 Análises

Para a realização das análises de estabilidade global e análise de deformações foi utilizado o software GeoStudio 2019. A estabilidade global foi realizada utilizando o método de Morgenstern-price e uma sobrecarga de 10 kPa. Os parâmetros geotécnicos utilizados no projeto são baseados no equacionamento de Hoek e Brown (2019) com redução de E em duas vezes, juntamente com valores demonstrados por Faro (2016) e estão apresentados na Tabela 1. O fator de segurança obtido é de 1,46, conforme Figura 5.

Tabela 1. Parâmetros do solo em função de Vs

Solo	Φ' (°)	c' (kPa)
Rocha com Recuperação 0%	25	75
Rocha com Recuperação 50%	26.	150
Rocha com Recuperação 100%	28.	300

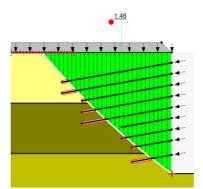


Figura 5. Estabilidade global da solução

Utilizando a modelagem numérica, foi possível a obtenção dos deslocamentos previstos com os parâmetros geotécnicos utilizados na Tabela 1 e valores dos elementos estruturais conforme equações (6) e (7). Os deslocamentos máximos estimados estão na faixa de 5 mm. A contenção possui 12 m de altura máxima, então a relação de deslocamentos horizontais/altura de escavação é de 0,04%, conforme Figura 6.

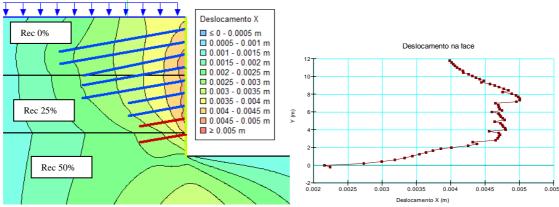


Figura 6. Análise da deformação através do MEF.

Os valores calculados estão de acordo com a NBR 11682 (ABNT, 2009) e abaixo dos valores de referência (0,2 a 0,5% da altura de escavação) segundo Fraga et al. (2017).

Como os deslocamentos foram aferidos através de miras reflexivas, foi possível calibrar o modelo com os parâmetros que correspondem melhor à realidade da obra. Os valores observados foram de 1,5 a 2,5 mm.

Após análise de sensibilidade dos parâmetros geotécnicos, foram encontrados resultados onde os valores apresentam um melhor ajuste ao levamento dos deslocamentos reais, estes valores encontram-se na Tabela 2, o resultado da análise está na Figura 7.

 Solo
 Ф' (°)
 c' (kPa)

 Rocha com Recuperação 0%
 25
 75

 Rocha com Recuperação 50%
 26.
 150

 Rocha com Recuperação 100%
 28.
 300

Tabela 2. Parâmetros do solo em função de Vs

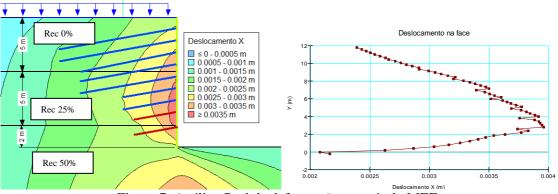


Figura 7. Análise final da deformação através do MEF.

7 Conclusões

A solução de solo grampeada adotada apresentou desempenho satisfatório, com pequenos deslocamentos medidos na face da estrutura.

A metodologia apresentada por Hoek e Brown (2019) se mostrou eficiente para a parametrização do basalto decomposto. A formulação apresentada pelos autores fornece valores adequados para ângulo de atrito, coesão e módulo de elasticidade.

Os resultados deste trabalho poderão auxiliar na calibração dos parâmetros geotécnicos do solo da região, fundamentais para a elaboração de projetos seguros e econômicos.

REFERÊNCIAS BIBLIOGRÁFICAS

Associação Brasileira de Normas Técnicas. NBR 6118 – Projeto de estrutural de concreto armado – Procedimento. Rio de Janeiro: ABNT, 2014.

. NBR 11682 – Estabilidade de encostas. Rio de Janeiro: ABNT, 2009.

- Brinkgreve, R. B. J.; Engin, E.; Swolfs, W. M. (2013). PLAXIS 3D 2013 user manual. Plaxis by, Delft.
- Diemer, F.; Rambo, D.; Specht, L. P.; Pozzobon, C. E. (2008) Propriedades geotécnicas do solo residual de basalto da região de Ijuí/RS. Teoria e Prática na Engenharia Civil, no. 12. p. 25-36.
- Faro, V. P. (2016) Carregamento Lateral em Fundações Profundas Associadas a Solos Tratados: Concepção, Provas de Carga e Diretrizes de Projeto. 349p. Tese (Doutorado em Engenharia). PPGEC UFRGS. Porto Alegre.
- Fraga, M. L.; Jung, J. G.; Pompermayer, M. C. (2017). A importância da medição dos deslocamentos horizontais em cortinas de contenção. IX Seminário de Engenharia Geotécnica do Rio Grande do Sul-GEORS.
- GEOGUIDE 7. (2017) Guide to Soil Nail Design and Construction. Geotechnical Engineering Office, Civil Engineering and Development Department. The Government of Hong Kong. Special Administrative Region, Hong Kong.
- GEORIO (2014). Manual Técnico de Encostas volume I, Prefeitura do Rio de Janeiro, Edição de 2014.
- Hoek, E.; Brown, E. T. (1997). Practical estimates of rock mass strength. International journal of rock mechanics and mining sciences, 34(8), 1165-1186.
- Hoek, E.; Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI–2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445-463.
- Hoek, E.; Marinos, P. (2000). Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and tunnelling international, 32(11), 45-51.
- Marinos, V.; Carter, T. G. (2018). Maintaining geological reality in application of GSI for design of engineering structures in rock. Engineering geology, 239, 282-297.
- Ortigão, J. A. R.; Palmeira, E. M.; Zirlis, A. (1993). Experiência com solo grampeado no Brasil: 1970-1993. Revista Solos e Rochas, v. 16 no. 4. p. 291-304.
- Palma, P. S. (2003). Estudo dos Rejeitos de Garimpo de Ametista do Distrito Mineral do Alto Uruguai, RS. 65 p. Trabalho de Conclusão de Curso (Graduação em Geologia) UFRGS, Porto Alegre.
- Perazzolo, L. (2003) Estudo Geotécnico de Dois Taludes da Formação Serra Geral, RS. 170p. Dissertação (Mestrado em Engenharia). Programa de Pós-Graduação em Engenharia Civil da UFRGS. Porto Alegre.
- Retore, T. S. (2005) Comportamento Mecânico de Agregados de Basalto Alterados Para Pavimentação, Rejeitos de Ametista, RS.127p. Dissertação (Mestrado em Engenharia). Universidade Federal do Rio Grande do Sul. Porto Alegre.
- SOLOTRAT Engenharia Geotécnica. (2018). Manual de Serviços Geoténicos. 6. Edição. São Paulo: Solotrat Engenharia Geotécnica. p. 4 21.